Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.152
Filtrar
1.
J Hazard Mater ; 470: 134169, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565022

RESUMEN

Microplastic (MP) pollution poses a significant threat to marine ecosystem and seafood safety. However, comprehensive and comparable assessments of MP profiles and their ecological and health in Chinese farming oysters are lacking. This study utilized laser infrared imaging spectrometer (LDIR) to quantify MPs in oysters and its farming seawater at 18 sites along Chinese coastlines. Results revealed a total of 3492 MPs in farmed oysters and seawater, representing 34 MP types, with 20-100 µm MP fragments being the dominant. Polyurethane (PU) emerged as the predominant MP type in oysters, while polysulfones were more commonly detected in seawater. Notably, oysters from the Bohai Sea exhibited a higher abundance of MPs (13.62 ± 2.02 items/g) and estimated daily microplastic intake (EDI, 2.14 ± 0.26 items/g/kg·bw/day), indicating a greater potential health risk in the area. Meanwhile, seawater from the Yellow Sea displayed a higher level (193.0 ± 110.7 items/L), indicating a greater ecological risk in this region. Given the pervasiveness and abundance of PU and its high correlation with other MP types, we proposed PU as a promising indicator for monitoring and assessing the risk MP pollution in mariculture in China. These findings provide valuable insights into the extent and characteristics of MP pollution in farmed oysters and seawater in China.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Microplásticos , Ostreidae , Agua de Mar , Contaminantes Químicos del Agua , Animales , Agua de Mar/análisis , China , Contaminantes Químicos del Agua/análisis , Ostreidae/química , Microplásticos/análisis , Medición de Riesgo
2.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567993

RESUMEN

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Agua de Mar/análisis , Agua de Mar/química , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
3.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646770

RESUMEN

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Asunto(s)
Diatomeas , Dinoflagelados , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua de Mar , China , Dinoflagelados/crecimiento & desarrollo , Agua de Mar/análisis , Agua de Mar/química , Diatomeas/crecimiento & desarrollo , Océanos y Mares , Fósforo/análisis , Nitrógeno/análisis , Estaciones del Año
4.
Sci Total Environ ; 922: 171103, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38402970

RESUMEN

Temperature changes due to climate change and microplastic contamination are worldwide concerns, creating various problems in the marine environment. Therefore, this study was carried out to discover the impact of different temperatures of seawater exposed to different types of plastic materials on culture dependent bacterial responses and oxidative characteristics. Seawater was exposed to microplastics obtained from various plastic materials at different temperature (-18, +4, +20, and +35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed seawater samples were analyzed for bacterial activity, biofilm formation and oxidative characteristics (antioxidant, catalase, glutathione, and superoxide dismutase) using Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The results showed that the activity and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus were affected through oxidative stress by catalase, glutathione, and superoxide dismutase due to the microplastic deformation by temperature changes. This study confirms that temperature changes as a result of climate change might influence microplastic degradation and their contamination impact in seawater in terms of bacterial metabolic and oxidation reactions.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Catalasa/metabolismo , Cambio Climático , Contaminantes Químicos del Agua/análisis , Agua de Mar/análisis , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Biopelículas
5.
Environ Monit Assess ; 196(2): 179, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244082

RESUMEN

This study aims to investigate and understand the temporal and spatial movement of seawater intrusion into the coastal aquifers. Groundwater salinity increase has affected the entire eastern part of the study area and is primarily influenced by direct and reverse ion exchange reactions associated with intrusion and freshwater influx phases, which alternate over monsoons. To gain insights into the spatiotemporal dynamics of the seawater intrusion process, hydrochemical facies analysis utilizing the HFE-Diagram was employed. Additionally, the study considered the major ionic changes during both the monsoons. The HFE-Diagram analysis of hydrochemical facies revealed distinctions in the behaviour of each coastal aquifer concerning seawater intrusion-induced salinization. In PRM 2020, the data shows that approximately 65% of the samples fall under the freshening phase, while the remaining 35% were categorized as intrusion phase. Within the freshening phase, seven different hydrochemical facies were identified, including Na-Cl, Na-MixCl, MixNa-MixCl, Na-MixHCO3/MixSO4, MixNa-MixSO4, Na-HCO3, and MixCa-HCO3. In contrast, the intrusion phase had four facies: MixCaMixHCO3, MixNa-Cl, Ca-Cl, and Na-Cl. Especially, the Na-Cl facies (f1) within the freshening phase attributed for the largest percentage, contributing 30% of the samples. In POM 2021, the distribution of samples shifted slightly, with approximately 72.5% belonging to the freshening phase and 27.5% to the intrusion phase. Within the freshening phase of POM 2021, five hydrochemical facies were identified: Na-Cl, Na-MixCl, Na-MixHCO3/MixSO4, MixNa-MixSO4, and Na-HCO3. The intrusion phase of POM 2021 had three facies: MixNa-Cl, Na-Cl, and MixCa-Cl. Similar to PRM 2020, the Na-Cl facies (f1) remained the most predominant in the freshening phase, comprising 30% of the samples. The relation between total dissolved solids (TDS) and various ionic ratios, such as HCO3-/Cl-, Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, K+/Cl-, and SO42-/Cl-, clearly demonstrates the presence of seawater influence within the coastal aquifers of the study area.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Facies , Monitoreo del Ambiente , Agua Subterránea/análisis , Agua de Mar/análisis , India , Salinidad , Iones/análisis , Sodio/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 31(9): 13335-13371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243027

RESUMEN

The overexploitation of coastal aquifers is one of the important reasons for the salinity of groundwater due to seawater intrusion (SWI). This study assesses the hydrochemical changes of the Ghaemshahr-Juybar (GH.-J.) plain. For this purpose, specific statistical methods, modified Piper diagram groundwater quality indicators ([Formula: see text] and [Formula: see text]), groundwater quality index specific to seawater intrusion ([Formula: see text]), and hydrochemical facies evolution diagram (HFE-D) along with GIS (Geographic Information System) techniques were applied to identify the spatiotemporal changes of salinity in coastal multilayer alluvial aquifer. The results show that the chemical composition in the GH.-J. aquifer is basically controlled by three main factors: (1) Caspian SWI and fossil saltwater penetration from an underlying layer, (2) reverse cation exchange process, and (3) feeding by domestic sewage, agricultural activities, and use of nitrate chemical fertilizers. The investigation of the hydrogeochemical facies evolution process shows that due to the reduction of extraction from wells, saltwater infiltration has significantly decreased. Therefore, according to the geological and lithological conditions of the aquifer and exposure to seawater, it is possible to prevent the entry of saltwater from the confined aquifer into the unconfined aquifer and the saltwater intrusion by developing well optimal operation policies in order to control withdrawal from semi-deep wells and the elimination of deep wells. This practical approach to managing the salinity of coastal aquifers is suitable for the allocating groundwater resources and for use in the development of aquifer simulation models.


Asunto(s)
Sistemas de Información Geográfica , Agua Subterránea , Humanos , Irán , Facies , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Agua de Mar/análisis , Salinidad , Proteína de la Hemocromatosis
8.
Sci Total Environ ; 914: 169751, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176548

RESUMEN

Considering the impact of the high salinity and high turbidity of coastal seawater on phosphorus forms, a new method was proposed to determine bioavailable inorganic phosphorus (BIP). The phosphorus most relevant to eutrophication is BIP, and traditional analysis methods may underestimate the degree of eutrophication. In this study, a microelectrode of multigold (AuµE) was fabricated for direct voltammetric determination of BIP without filtration, and BIP environmental characteristics including distribution and correlation relationships with environmental factors in typical coastal seawater of Northern China were analyzed. The proposed AuµE showed a low detection limit of 0.03 µM. The surface and bottom BIP concentrations ranged from 1.00 to 2.13 and from 0.88 to 2.05 µM, respectively. BIP dominated the total P (TP) accounting for 48.5-67.5 % in the surface layer samples, and 32.6-92.7 % in the bottom layer samples, respectively. The concentrations of BIP were obviously higher than those of DIP, indicating that DIP may underestimate the probability of eutrophication occurring. And BIP was positively correlated with dissolved oxygen (DO) (P < 0.05). BIP may be a promising indicator of eutrophication potential in coastal areas with high salinity and high turbidity. The proposed reliable voltammetry method provides a new indicator for environmental assessment and represents a significant step in the comprehensive analysis of P species.


Asunto(s)
Eutrofización , Agua de Mar , Agua de Mar/análisis , Fósforo/análisis , China , Salinidad , Monitoreo del Ambiente/métodos , Nitrógeno/análisis
9.
Environ Sci Technol ; 57(43): 16541-16551, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37853526

RESUMEN

Microplastics (MP) including tire wear particles (TWP) are ubiquitous. However, their mass loads, transport, and vertical behavior in water bodies and overlying air are never studied simultaneously before. Particularly, the sea surface microlayer (SML), a ubiquitous, predominantly organic, and gelatinous film (<1 mm), is interesting since it may favor MP enrichment. In this study, a remote-controlled research catamaran simultaneously sampled air, SML, and underlying water (ULW) in Swedish fjords of variable anthropogenic impacts (urban, industrial, and rural) to fill these knowledge gaps in the marine-atmospheric MP cycle. Polymer clusters and TWP were identified and quantified with pyrolysis-gas chromatography-mass spectrometry. Air samples contained clusters of polyethylene terephthalate, polycarbonate, and polystyrene (max 50 ng MP m-3). In water samples (max. 10.8 µg MP L-1), mainly TWP and clusters of poly(methyl methacrylate) and polyethylene terephthalate occurred. Here, TWP prevailed in the SML, while the poly(methyl methacrylate) cluster dominated the ULW. However, no general MP enrichment was observed in the SML. Elevated anthropogenic influences in urban and industrial compared to the rural fjord areas were reflected by enhanced MP levels in these areas. Vertical MP movement behavior and distribution were not only linked to polymer characteristics but also to polymer sources and environmental conditions.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Agua , Plásticos/análisis , Agua de Mar/análisis , Agua de Mar/química , Tereftalatos Polietilenos , Polimetil Metacrilato , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
10.
Nat Commun ; 14(1): 6354, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816747

RESUMEN

Marine viruses in seawater have frequently been studied, yet their dispersal from neuston ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we show that 6.2% of the studied virus population were shared between air-sea interface ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams happened selectively, and variant analysis proved virus transfer to aerosols collected at ~2 m height above sea level and rain. Viruses detected in rain and these aerosols showed a significantly higher percent G/C base content compared to marine viruses. CRISPR spacer matches of marine prokaryotes to foreign viruses from rainwater prove regular virus-host encounters at the air-sea interface. Our findings on aerosolization, adaptations, and dispersal support transmission of viruses along the natural water cycle.


Asunto(s)
Ecosistema , Virus , Ciclo Hidrológico , Agua de Mar/análisis , Virus/genética , Aerosoles/análisis
11.
Environ Sci Pollut Res Int ; 30(48): 105308-105328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37713083

RESUMEN

Physical barrier has been proven to be one of the most effective measures to prevent and control seawater intrusion (SWI) in coastal areas. Mixed physical barrier (MPB), a new type of physical barrier, has been shown to have higher efficiency in SWI control. As with conventional subsurface dam and cutoff wall, the construction of MPB may lead to the accumulation of nitrate contaminants in coastal aquifers. We investigated the SWI control capacity and nitrate accumulation in the MPB using a numerical model of variable density flow coupling with reactive transport, and performed sensitivity analysis on the subsurface dam height, cutoff wall depth and opening spacing in the MPB. The differences in SWI control and nitrate accumulation between MPB and conventional subsurface dam and cutoff wall were compared to assess the applicability of different physical barrier. The numerical results show that the construction of MPB will increase the nitrate concentration and contaminated area in the aquifer. The prevention and control efficiency of MPB against SWI is positively correlated with the depth of the cutoff wall, reaching the highest efficiency at the minimum effective dam height, and the retreat distance of the saltwater wedge is positively correlated with the opening spacing. We found a non-monotonic relationship between the change in subsurface dam height and the extent of nitrate accumulation, with total nitrate mass and contaminated area increasing and then decreasing as the height of the subsurface dam increased. The degree of nitrate accumulation increased linearly with increasing the height of the cutoff wall and the opening spacing. Under certain conditions, MPB is 46-53% and 16-57% more efficient in preventing and controlling SWI than conventional subsurface dam and cutoff wall, respectively. However, MPB caused 14-27% and 2-12% more nitrate accumulation than subsurface dam and cutoff wall, respectively. The findings of this study are of great value for the protection of coastal groundwater resources and will help decision makers to select appropriate engineering measures and designs to reduce the accumulation of nitrate pollutants while improving the efficiency of SWI control.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Nitratos/análisis , Agua de Mar/análisis , Agua Subterránea/análisis , Ingeniería , Contaminantes Ambientales/análisis , Monitoreo del Ambiente
12.
Environ Sci Pollut Res Int ; 30(50): 109181-109197, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37759059

RESUMEN

Members of the Gulf Cooperation Council countries Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates rely on desalination to produce water for domestic use. Desalination produces brine that may intrude into the aquifers to pollute the fresh groundwater because of the concentration gradient and groundwater pumping. Modeling the trends of saltwater intrusion needs theoretical understanding and thorough logical experimentation. The objective of this exercise was to understand the phenomenon of saltwater intrusion using an existing set of data analyzed with the convective-diffusion equation and the two-region mobile-immobile solution model. The objective was achieved by optimizing non-measurable solute transport parameters from an existing set of data generated from a series of logical miscible displacements of potassium bromide through sepiolite minerals and curve-fitting simulations. Assumptions included that solute displacements through sepiolite porous media and the related simulations represented the phenomenon of saltwater intrusion under non-equilibrium conditions of porous media mimicking the aquifers. Miscible displacements of potassium bromide were observed from a column of 2.0-2.8 mm aggregates of sepiolite over 4 ranges of concentration and at 11 displacement speeds under saturated vertical flow deionized water and vice versa. Breakthrough curves of both bromide and potassium ions were analyzed by a curve-fitting technique to optimize transport parameters assuming solute movement was governed (i) by the convective-diffusion equation and (ii) the two-region mobile-immobile solution model. Column Peclet numbers from the two analyses were identical for potassium ions but those for bromide ions were c. 60% greater from the two-region model than from the convective-diffusion equation. For the two-region model, dispersion coefficients were well defined and remained unchanged from the convective-diffusion equation for potassium ions but decreased for bromide ions. Retardation factors for bromide ions were approximately the same, but those for potassium ions, though > 1, were poorly defined. In order to design mitigation strategies for avoiding groundwater contamination, this study's findings may help model groundwater pollution caused by the activities of desalination of seawater, which produces concentrated liquid that intrudes into the coastal aquifer through miscible displacement. However, robust saltwater intrusion models may be considered in future studies to confirm the results of the approach presented in this exercise. Field data on the groundwater contamination levels may be collected to compare with simulated trends drawn from the saltwater intrusion models and the curve-fitting technique used in this work. A comparison of the output from the two types of models may help determine the right option to understand the phenomena of saltwater intrusion into coastal aquifers of various characteristics.


Asunto(s)
Bromuros , Agua Subterránea , Bromuros/análisis , Agua Subterránea/análisis , Agua/análisis , Agua de Mar/análisis , Iones/análisis , Potasio/análisis , Monitoreo del Ambiente
13.
Environ Int ; 179: 108140, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595537

RESUMEN

Antibiotics are emerging pollutants that have detrimental effects on both target and non-target organisms in the environment. However, current methods for environmental risk assessment primarily focus on the risk to non-target organisms in ecosystems, overlooking a crucial risk of antibiotics - the induction of resistance in targeted bacteria. To address this oversight, we have incorporated resistance (R) risk with persistence, bioaccumulation and toxicity (PBT) to establish a more comprehensive PBTR (persistence, bioaccumulation, toxicity, and resistance) framework for antibiotic-specific risk assessment. Using the PBTR framework, we evaluated 74 antibiotics detected in Chinese seawater from 2000 to 2021, and identified priority antibiotics. Our analysis revealed that the priority antibiotics with R risk accounted for the largest proportion (50% to 70%), followed by P risk (40% to 58%), T risk (16% to 35%) and B risk (0 to 13%). To further categorize these priority antibiotics, we assigned them a risk level according to their fulfillment of criteria related to P, B, T, and R. Antibiotics meeting all four indicators were classified as Grade I, representing the highest risk level. Grade II and Grade III were assigned to antibiotics meeting three or two indicators, respectively. Antibiotics meeting only one indicator were classified as Grade IV, representing the lowest risk level. The majority of priority antibiotics fell into Grade IV, indicating low risk (55% to 79%), followed by Grade III (16% to 45%). The highest risk antibiotic identified in this study was clindamycin (CLIN), categorized as Grade II, in the East China Sea. Our findings aligned with previous studies for 25 antibiotics, affirming the validity of the PBTR framework. Moreover, we identified 13 new priority antibiotics, highlighting the advancement of this approach. This study provides a feasible screening strategy and monitoring recommendations for priority antibiotics in Chinese seawater.


Asunto(s)
Antibacterianos , Bioacumulación , Farmacorresistencia Microbiana , Agua de Mar , Contaminantes Químicos del Agua , Antibacterianos/efectos adversos , Antibacterianos/análisis , Antibacterianos/farmacología , Antibacterianos/toxicidad , Ecosistema , Agua de Mar/análisis , Contaminación Química del Agua , Contaminantes Químicos del Agua/efectos adversos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/farmacología , Contaminantes Químicos del Agua/toxicidad , China
14.
J Environ Manage ; 344: 118689, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549585

RESUMEN

Various methods have been proposed for in situ measurement of nitrate concentrations from the ultraviolet (UV) absorbance spectrum of seawater with stable salinity and constituents. However, salinity and temperature affect the UV absorption spectrum of seawater. In sea areas with large variability in salinity and water temperature, accurate nitrate ion concentration measurements remain challenging. We performed in situ measurements of nitrate, chloride, and bromide in estuarine seawater with different salinity compositions and applied water temperature compensation. First, the impact of water temperature on the UV absorbance of chloride, bromide, and nitrate was experimentally investigated and represented in a mathematical model. Next, chloride, bromide, and nitrate concentrations were estimated by suppressing the impact of residual components from the UV absorbance spectra of seawater using principal component regression (PCR). Hence, the chloride, bromide, and nitrate concentrations were determined by measuring the UV absorbance spectrum of seawater alone, without measuring water temperature and electrical conductivity. The proposed method was more accurate (±1.39 µM below 100 µM and ±0.90 µM below 20 µM) than the conventional method (±2.35 µM below 100 µM and ±1.88 µM below 20 µM) and PCR without water temperature compensation (±3.67 µM). In a field study, an in situ UV spectrophotometer with water temperature compensation was used to measure depth profiles of nitrate concentrations in estuarine seawater. We successfully measured the depth profiles of low chloride and high nitrate concentrations in the surface layer as well as high chloride and low nitrate concentrations in the lower layer. The proposed method enables in situ measurements of nitrate concentrations in waters with either stable or highly variable salinity and composition. Unlike conventional chemical analysis, our method can describe detailed spatiotemporal variations in nitrate concentrations.


Asunto(s)
Cloruros , Nitratos , Nitratos/análisis , Espectrofotometría Ultravioleta , Bromuros , Temperatura , Salinidad , Agua de Mar/análisis , Agua de Mar/química , Agua/química
15.
Nature ; 620(7972): 104-109, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532817

RESUMEN

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Asunto(s)
Hierro , Minerales , Agua de Mar , Hierro/análisis , Hierro/química , Hierro/metabolismo , Ligandos , Minerales/análisis , Minerales/química , Minerales/metabolismo , Ciclo del Carbono , Conjuntos de Datos como Asunto , Océano Atlántico , Agua de Mar/análisis , Agua de Mar/química , Bermudas , Factores de Tiempo , Estaciones del Año , Soluciones/química , Internacionalidad
16.
Nature ; 621(7979): 536-542, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37558870

RESUMEN

Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.


Asunto(s)
Antozoos , Conservación de los Recursos Naturales , Arrecifes de Coral , Calor Extremo , Calentamiento Global , Océanos y Mares , Agua de Mar , Animales , Conservación de los Recursos Naturales/métodos , Calor Extremo/efectos adversos , Peces , Calentamiento Global/estadística & datos numéricos , Objetivos , Hawaii , Actividades Humanas , Cooperación Internacional , Agua de Mar/análisis , Agua de Mar/química , Aguas Residuales/análisis , Factores de Tiempo
17.
Sci Total Environ ; 896: 165229, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37394072

RESUMEN

Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as blaTEM, sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.


Asunto(s)
Farmacorresistencia Bacteriana , Agua Dulce , Agua de Mar , Aguas Residuales , Microbiología del Agua , Animales , Bacterias/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Genes Bacterianos/genética , Estudios Prospectivos , Aguas Residuales/análisis , Aguas Residuales/microbiología , Agua/análisis , Agua de Mar/análisis , Agua de Mar/microbiología , Agua Dulce/análisis , Agua Dulce/microbiología , Asia Sudoriental
18.
Mar Pollut Bull ; 194(Pt A): 115335, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37506492

RESUMEN

The total dimethylsulfoniopropionate (DMSPt) concentrations over the surface seawater of China's marginal seas and the northwest Pacific Ocean (NWPO) in May-July 2021 (during the recessional period of La Niña) were analysed. The results showed that the DMSPt concentrations in the marginal seas of China varied from 4.73 to 775.96 nmol L-1, with an average value of 111.42 ± 129.30 nmol L-1 (average ± standard deviation). It was 2-12 times higher than those previously measured in the same seas and in the NWPO in this study. Significant positive correlations between DMSPt, chlorophyll-a and surface seawater temperature (SST) were observed in the SYS, the ECS and the NWPO. Moreover, their abnormally high SST was related to La Niña. These results suggested that high phytoplankton abundance was caused by abnormally high SST following La Niña, which further promoted DMSPt concentration increases. However, the increase of DMSPt was also related to other factors such as nutrients.


Asunto(s)
El Niño Oscilación del Sur , Agua de Mar , Océano Pacífico , Océanos y Mares , Agua de Mar/análisis , China
19.
Nature ; 618(7967): 967-973, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37380694

RESUMEN

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Asunto(s)
Atmósfera , Cambio Climático , Modelos Climáticos , Clima , Frío , Halógenos , Atmósfera/análisis , Atmósfera/química , Halógenos/análisis , Hidrocarburos Halogenados , Océanos y Mares , Agua de Mar/análisis , Agua de Mar/química , Cambio Climático/estadística & datos numéricos , Actividades Humanas
20.
Appl Radiat Isot ; 198: 110853, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37216724

RESUMEN

Gamma detector detection technology based on NaI(Tl) scintillation crystal has become a popular research topic and has been applied in the field of marine radioactive environment automatic monitoring because of its advantages of low power consumption, low cost and strong environmental adaptability. However, insufficient energy resolution of the NaI(Tl) detector and great Compton scattering in the low-energy region caused by the abundance of natural radionuclides in seawater hinder the automatic analysis of radionuclides in seawater. This study adopts the combination of theoretical derivation, simulation experiment, water tank test and seawater field test, establishing an effective and feasible spectrum reconstruction method. The measured spectrum in seawater is regarded as the output signal formed by the convolution of the incident spectrum and the detector response function. The acceleration factor p is introduced to construct the Boosted-WNNLS deconvolution algorithm, which is used to iteratively reconstruct the spectrum. The analysis results of the simulation test, water tank test and field test meet the radionuclide analysis speed and accuracy requirements for the in-situ automatic monitoring of seawater radioactivity. The spectrum reconstruction method in this study converts the physical problem of insufficient detection accuracy of spectrometer in the practical application into a mathematical problem of deconvolution solution, restores the original radiation information in seawater, and improves the resolution of the seawater gamma spectrum.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Monitoreo de Radiación/métodos , Espectrometría gamma/métodos , Método de Montecarlo , Agua de Mar/análisis , Radioisótopos/análisis , Agua/análisis , Rayos gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...